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Acceptance
Test

Acceptance
Test

Traditional Development Cycle

Testing Follows Implementation:

Unit tests are executed after modules are completed.

Integration testing follows implementation.

Acceptance testing begins at the end of integration.
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Moving Tests Forward

Testing Occurs Before Implementation:

Acceptance tests are developed as part of the requirements.

Integration tests are developed as part of the design.

Unit tests are developed as part of the implementation.

Test are executed throughout implementation; test failures 
drive what to do next.

Requirements

Write
Acceptance 

Tests

Design

Write
Integration

Tests
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Testing in an Agile Development Cycle

Agile Development is not phase-oriented, so 
tests are executed throughout the cycle, not 
just during implementation.
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How Does Testing Drive Development?

Test-Driven Development (TDD) says to create tests first 
and let them drive implementation. The three rules of 
TDD demonstrate how to do that.

3 Rules of TDD

1. Write production code only to pass a failing test.

2. Write only enough test code to fail.

3. Write only enough production code to pass.
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TDD at the Unit Test Level

Red-Green-Refactor

Write a unit test that fails.

Write production code to make the test pass.

Clean up both test and production code.

for example …

Unit tests are created by developers to add functionality 
to a class or module.

At the unit test level the three rules are manifest in the 
“red-green-refactor” approach:
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TDD at the Unit Test Level   (cont’d)

External dependencies are handled 
by creating mock objects.

External 
Dependencies

Using the Red-Green-Refactor approach, developers 
create unit tests for individual modules as they add 
functionality.
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TDD at the Integration Test Level

Additional integration tests may be needed
to address scaling, loading or speed.

Initial integration tests are the unit tests with
real components replacing mock objects.
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Module
A

Module
B

Database

TDD at the Acceptance Test Level

Acceptance tests may take the form of use case 
scenarios executed via a user interface …

… or they may be the integration tests 
from an external application.
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Driving Development with Tests

Create
User

Stories

User
Story

User
Story

User
Story

User
Story

Acceptance
Test

Scenario

Create
Acceptance

Test
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D
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C

Develop 
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From Details to Done

Develop acceptance test scenarios from groups of related 
features.

Develop integration tests for components of a simple, 
initial design.

Develop unit tests and components using the red-green-
refactor approach and mock objects.

Integrate components by replacing mock objects with 
actual components and executing unit and integration 
tests.

Execute acceptance test scenarios to ensure all 
functionality is complete.
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Benefits of Test-Driven Development

Definition of Done
Up front test definition provides a 
concrete “definition of done” 

Customer Acceptance Tests
Allows customers to write acceptance 
level tests without needing to 
understand technical details
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Drawbacks of Test-Driven Development

Simple Designs
Creates a solution, but not necessarily 
the best or most efficient solution 

Exhaustive Testing Not Addressed
Difficult and/or inefficient for projects 
requiring exhaustive testing
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[Test]
public class Greeter_Test
{

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
}

}

Greeter_Test

Compilation Error

Very Simple TDD Example – Hello World
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public class Greeter
{

Greeter()
}

[Test]
public class Greeter_Test
{

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
}

}

Greeter_Test Greeter

Very Simple TDD Example   (cont’d)
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public class Greeter
{

Greeter()
}

[Test]
public class Greeter_Test
{

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
Assert(myGreeter.getGreeting(), “Hello World”)

}
}

Greeter_Test Greeter

Compilation Error

Very Simple TDD Example   (cont’d)
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public class Greeter
{

Greeter()

String getGreeting()
{

return “”
}

}

[Test]
public class Greeter_Test
{

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
Assert(myGreeter.getGreeting(), “Hello World”)

}
}

Greeter_Test Greeter

Test Failure

Very Simple TDD Example   (cont’d)
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public class Greeter
{

Greeter()

String getGreeting()
{

return “Hello World”
}

}

[Test]
public class Greeter_Test
{

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
Assert(myGreeter.getGreeting(), “Hello World”)

}
}

Greeter_Test Greeter

Very Simple TDD Example   (cont’d)
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public class Greeter
{

const String greeting = “Hello World”

Greeter()

String getGreeting()
{

return greeting
}

}

[Test]
public class Greeter_Test
{

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
Assert(myGreeter.getGreeting(), “Hello World”)

}
}

Greeter_Test Greeter

Very Simple TDD Example   (cont’d)
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public class Greeter
{

const String greeting = “Hello World”

Greeter()

String getGreeting()
{

return greeting
}

}

[Test]
public class Greeter_Test
{

const String expectedGreeting = “Hello World”

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
Assert(myGreeter.getGreeting(), expectedGreeting)

}
}

Greeter_Test Greeter

Very Simple TDD Example   (cont’d)
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public class Greeter
{

const String greeting = “Hello World”

private Greeter()

static Greeter GetInstance()
{

return new Greeter()
}

String getGreeting()
{

return greeting
}

}

[Test]
public class Greeter_Test
{

const String expectedGreeting = “Hello World”

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
Assert(myGreeter.getGreeting(), expectedGreeting)

}
}

Greeter_Test Greeter

Compilation Error

Very Simple TDD Example   (cont’d)
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public class Greeter
{

const String greeting = “Hello World”

private Greeter()

static Greeter GetInstance()
{

return new Greeter()
}

String getGreeting()
{

return greeting
}

}

[Test]
public class Greeter_Test
{

const String expectedGreeting = “Hello World”

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = Greeter.GetInstance()
Assert(myGreeter.getGreeting(), expectedGreeting)

}
}

Greeter_Test Greeter

Very Simple TDD Example   (cont’d)
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public class Greeter
{

const String greeting = “Hello World”

private Greeter()

static Greeter GetInstance()
{

return new Greeter()
}

String getGreeting()
{

return greeting
}

}

[Test]
public class Greeter_Test
{

const String expectedGreeting = “Hello World”

[TestMethod]
public void TestDisplayHelloWorld()
{

Assert(Greeter.GetInstance().getGreeeting,
expectedGreeting)

}
}

Greeter_Test Greeter

Very Simple TDD Example   (cont’d)
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